Depth Map Upsampling via Multi-Modal Generative Adversarial Network

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Depth Map Upsampling using Edge Information

In this paper, we propose a new depth map upsampling method to increase the depth image resolution using edge information. Although the joint bilateral upsampling (JBU) method expands the resolution of the depth map using two weighting functions, the complexity of JBU is relatively high. In the proposed upsampling method, we reduce the complexity of depth map upsmapling operation using a color ...

متن کامل

Simultaneously Color-Depth Super-Resolution with Conditional Generative Adversarial Network

Recently, Generative Adversarial Network (GAN) has been found wide applications in style transfer, image-to-image translation and image super-resolution. In this paper, a colordepth conditional GAN is proposed to concurrently resolve the problems of depth super-resolution and color super-resolution in 3D videos. Firstly, given the low-resolution depth image and low-resolution color image, a gen...

متن کامل

Generative Multi-Adversarial Networks

Generative adversarial networks (GANs) are a framework for producing a generative model by way of a two-player minimax game. In this paper, we propose the Generative Multi-Adversarial Network (GMAN), a framework that extends GANs to multiple discriminators. In previous work, the successful training of GANs requires modifying the minimax objective to accelerate training early on. In contrast, GM...

متن کامل

Wasserstein Generative Adversarial Network

Recent advances in deep generative models give us new perspective on modeling highdimensional, nonlinear data distributions. Especially the GAN training can successfully produce sharp, realistic images. However, GAN sidesteps the use of traditional maximum likelihood learning and instead adopts an two-player game approach. This new training behaves very differently compared to ML learning. Ther...

متن کامل

Controllable Generative Adversarial Network

Although it is recently introduced, in last few years, generative adversarial network (GAN) has been shown many promising results to generate realistic samples. However, it is hardly able to control generated samples since input variables for a generator are from a random distribution. Some attempts have been made to control generated samples from GAN, but they have shown moderate results. Furt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sensors

سال: 2019

ISSN: 1424-8220

DOI: 10.3390/s19071587